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Abstract: In this work, an algorithm for enhancing the rating prediction accuracy in collaborative
filtering, which does not need any supplementary information, utilising only the users’ ratings
on items, is presented. This accuracy enhancement is achieved by augmenting the importance of
the opinions of ‘black sheep near neighbours’, which are pairs of near neighbours with opinion
agreement on items that deviates from the dominant community opinion on the same item. The
presented work substantiates that the weights of near neighbours can be adjusted, based on the
degree to which the target user and the near neighbour deviate from the dominant ratings for each
item. This concept can be utilized in various other CF algorithms. The experimental evaluation
was conducted on six datasets broadly used in CF research, using two user similarity metrics and
two rating prediction error metrics. The results show that the proposed technique increases rating
prediction accuracy both when used independently and when combined with other CF algorithms.
The proposed algorithm is designed to work without the requirements to utilise any supplementary
sources of information, such as user relations in social networks and detailed item descriptions. The
aforesaid point out both the efficacy and the applicability of the proposed work.

Keywords: collaborative filtering; black sheep users; rating prediction accuracy; evaluation

1. Introduction

Collaborative filtering (CF) is a dominant recommender systems technique that con-
sider users’ likes and tastes, expressed as item ratings, to create personalised recommenda-
tions [1,2]. It ensembles likes from users having similar tastes/preferences, termed as ‘near
neighbours’ to compute rating predictions for items, which then lead to recommendations.
Since rating prediction accuracy is directly related to recommendation usefulness and relia-
bility, a major challenge that collaborative filtering systems confront is the enhancement of
rating prediction accuracy.

The two main categories of CF algorithms are the memory-based and the model-
based ones [3,4]. The algorithms that belong in the first category exploit user rating data
to compute the similarity between users (or items). The ones that belong in the second
category develop models using various techniques (derived from data mining, machine
learning, etc.) [5–7]. Furthermore, there are many hybrid approaches, combining the
features of the aforementioned two main categories.

Each of the three approaches has its own advantages: (a) the memory-based approach
is characterized by ease of creation and use, high explainability of results, easy incorpora-
tion of new data, content-independence of the items being recommended and good scaling
with co-rated items; (b) the model-based approach is characterized by matrix sparsity
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handling, scalability and high accuracy and (c) the hybrid approach exhibits elevated
performance and overcome sparsity and loss of information [3,8–10].

Correspondingly, each of the three approaches exhibit a number of disadvantages:
(a) the memory-based approach cannot adequately handle sparsity, does not scale well
with the volume of data, and number of entities and falls behind in accuracy; (b) the
model-based approach is time-consuming to build and update, cannot be directly applied
on a diverse user range, and has low explainability, and (c) the hybrid approach exhibits
increased complexity and high implementation cost.

Explainability has been recently recognized as a key aspect in recommender systems.
Explainable recommender systems are able to show to their users comprehensible descrip-
tions on why an item is recommended, thus increasing transparency and the likelihood
that recommendations are accepted [11–13]. In this area, model-based approaches exhibit
considerably lower performance than memory-based approaches, since it is very hard
to explain how deep learning networks (which are predominantly used to implement
model-based approaches) have amassed their knowledge, on which the recommendations
are based [11]. Under this view, an enterprise or organization may opt to employ a memory-
based recommender system, aiming to improve the probability that recommendations are
accepted while in parallel lowering the recommender system creation and maintenance
cost, albeit the accuracy of recommendations may not be optimal.

Moreover, a number of techniques have been developed for memory-based systems,
aiming to tackle the deficiencies presented above; these include distributed techniques [14]
and optimization methods [15–18] to improve scalability, density enrichment [19] and cov-
erage increase methods [20] to tackle sparsity, and a multitude of methods to improve rating
prediction and recommendation quality [21–25]. Considering all the above, memory-based
techniques are a viable approach for building contemporary and efficient recommender
systems.

Memory-based CF algorithms, as the one presented in this work, typically, include
three main steps: (i) find users having similar or at least close tastes, by examining the
similarity of already submitted ratings, (ii) predict the rating value that a user would give
to an item that he or she has not evaluated yet, and (iii) recommend the items having the
highest prediction values to the (target) user [26].

During step (i), for each user U, users computed to have high similarity with U, based
on their likings, represented by the ratings they have entered in the rating database (rDB),
are labelled as U’s near neighbours (NNs) [27]. In order to identify users’ NNs, a similarity
function is used, such as the Cosine Similarity and the Pearson Correlation Coefficient,
which are the dominant ones in CF research [28,29].

Having found U’s NNs and having computed their numeric similarities with U,
during step (ii) a prediction formula is used that computes the numeric rating value that U
would give to items that he or she has not evaluated, based on the existed ratings in the
rDB [30,31]. The weight/importance of each NN to the prediction value is based only on
this similarity with U, calculated during step (i).

Finally, having computed the prediction values of the items that user U has not
evaluated yet, during step (iii) the CF system recommends to U the items that obtained
the highest prediction values and hence have the highest probability of U actually liking
them [32,33].

This work focuses on the second step that a CF system encompasses, i.e., the rating pre-
diction computation; in this step, the proposed approach modifies the weight/importance
of each NN to the prediction value, complementing the similarity of U to his/her NNs with
a “black sheep factor”. More specifically, for each item, we classify users into two categories
of interest, those who seem to like the item and those who do not, based on their ratings on
this item. When an item is generally accepted, it is more probable to find pairs of users
that have entered high ratings for this item. Conversely, it is less probable to find pairs of
users that have entered low ratings for the same item. As a result, the novelty of this work
is that, after the average rating value (given by all users) of each item is computed, which
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is a simple and straightforward procedure, it modifies the weight/importance of each NN,
based on the aforementioned concept, i.e., based on the relative (un-) acceptance of their
commonly rated items, in combination with their ratings on these items. The rationale
behind the usage of the aforementioned concept derives from the fact that when in real
life a human likes a product (e.g., a TV series, a car model, a videogame) that the majority
of others do not (and hence this product obtains a relatively low average rating value),
and this human finds another one that also likes the exact same product, the probability
of valuing his opinion with greater prominence than the opinions of other users, for a
future recommendation, is relatively high. This rationale is in line with the use of the
inverse document frequency (IDF) metric in information retrieval, where terms occurring
less frequently in the document corpus are assigned higher weights [34].

To validate our approach, an extensive evaluation is presented, using (i) two user
similarity metrics, (ii) two rating prediction error metrics, and (iii) six datasets that are
widely used in CF research.

It is worth mentioning, that the proposed approach (i) does not need any kind of
supplementary information, apart from users’ ratings on items, and hence can be applied
in any CF dataset and (ii) can be fused with other CF approaches, aiming to enhance
rating prediction accuracy or efficiency, either using supplementary sources of information,
such as users’ relations in social networks and detailed characteristics of items [35–37] or
not [38–40].

The rest of the paper is structured as follows: in Section 2 the related work is
overviewed, while in Section 3 the proposed algorithm is introduced. In Section 4 the
methodology for tuning the algorithm’s operation is reported, as well as the presented
algorithm is evaluated. Finally, Section 5 concludes the paper and outlines future work.

2. Related Work

The accuracy of CF-based recommender systems is a research field that has attracted
numerous research works over the last years, which are divided into two main categories.
The first category includes research works which exploit supplementary sources of infor-
mation, such as user relations in social networks and item characteristics, while the second
category includes research works that are based solely on the information contained in the
user-item rating matrix.

In regard to the first category, [41] examines the impact of incorporating social ties in
the prediction formulation, targeting prediction accuracy and presents a social network
CF algorithm which tunes the contribution of the social information by using a learning
method as a weight parameter in the proposed similarity measure. The work in [42]
extracts information from distant social relations and captures opinions from users while
modelling their interactions with items, introducing a deep social CF algorithm that ex-
ploits social network information for recommendation production. Ref. [43] proposes a
method that overcomes the cold start problem and the data sparsity in CF, by designing
a Matrix Factorization (MF) Linked Open Data model, which uses a knowledge base to
find information concerning the new entities. Ref. [44] states that both group affiliation
information and social network information may significantly enhance the accuracy of
popularity-based voting recommender systems as well as introduce a set of NN-based
and MF-based recommender systems for online social voting. The work in [45] combines
tie strength with social network information to create a local random walk-based friend
recommendation method. Initially, the basis for friend recommendation is constructed, by
using a weighted friend network and then this network is used to compute user similarity
by a local random walk-based similarity measure. Ref. [46] firstly introduces a sparsity
alleviation approach, based on implicit and explicit satisfaction and uses objective and
subjective trust, to establish enhanced trust relationships among users. Then, for each
target user, it selects the user’s trusted neighbours, which are screened using emotional
consistency. Finally, it predicts item ratings to obtain the final recommendations lists.
Ref. [36] combines time decay factor for rated items, cognition relationships between users,
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and personal cognition behaviour into a unified probabilistic MF model and presents a
social MF method for personalised recommendation using social interaction factors.

Although all the previous works achieve relatively high rating prediction accuracy
improvement, the supplementary source of information required may not always be
available. As a result, an algorithm which can work using only the information located in
the user-item-rating matrix may prove to be more appropriate, since it can be applied to
every CF dataset.

To this extent, ref. [47] introduces an approach that realises an item-variance weighting
in item-based CF. More specifically, it applies a time-related correlation degree to form
time-aware similarity computation, which estimates the relationship between two items
and reduces the importance of an item that has not recently been rated. Ref. [48] presents a
CF optimization method that initially incorporates multiple interests to optimize neighbour
selection and then it utilises a ranking strategy that rearranges both the top-N item list and
the area the threshold controls, maximising the popularity while maintaining a relatively
low prediction accuracy reduction. Ref. [49] clusters items and users by using a Gaussian
mixture model and builds a new interaction matrix by extracting new item features that
manages to solve the impact of rating data sparsity on CF algorithms. Furthermore, by
combining the Jaccard and triangle similarities, it proposes a new similarity calculation
algorithm. Ref. [50] presents a slope one algorithm based on user similarity and trusted
data fusion that can be applied in various CF systems. For the creation of the final rec-
ommendation formula, the proposed algorithm includes the procedures of trusted data
selection, user similarity calculation and inclusion of this similarity to the weight factor of
the improved slope one algorithm. Ref. [51] presents a local similarity algorithm that can
use multiple correlation structures between CF users. Firstly, it uses a clustering method to
discover groups of similar items and then, for each cluster, it creates a user-based similarity
model, namely Cluster-based Local Similarity. Ref. [52] introduces a CF algorithm that
exploits repetitive purchased products and symmetric purchasing order, to tackle user big
data. The presented algorithm combines a word2vec mechanism with a gradient boosting
machine learning architecture to explore the purchased products based on users’ click
patterns. In [53], a product recommendation method for CF based on the triangle similarity
is presented. The similarity metric considers the ratings of both the non-commonly rated
items from pairs of users as well as the common rated ones. It is further complemented
with the user rating preference behaviour in giving rating preferences. In [54], a CF rating
prediction algorithm is introduced that modulates the rating prediction numeric value,
based on the relation between the period the rating to be predicted belongs to, in a certain
product category and the users’ experienced wait period in the same product category,
targeting at enhancing the prediction accuracy of CF systems.

Still, none of the aforementioned research allow for the aspect of users that share a
positive or negative opinion about an item, but are outliers when compared to the majority
of the users in the dataset. The present work fills this gap by introducing an algorithm that
modifies the weight/importance of each NN to the prediction value, based on the relative
(un-)acceptance of their commonly rated items, in combination with their ratings on these
items, and assessing its performance both used independently and combined with another
CF algorithm also aiming at enhancing rating prediction accuracy.

3. The Proposed Algorithm

The procedure that a CF algorithm typically follows, when predicting a rating for user
U includes three main steps:

1. Find users having close/similar tastes with U, by examining the similarity of al-
ready submitted ratings in the rDB, to identify U’s near neighbour (NN) users; these
users will operate as recommenders to U. Typically, in CF systems, the metrics used
to quantify user similarity, is the Pearson correlation coefficient (PCC) and the Co-
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sine Similarity (CS) [55,56], which are expressed as shown in Equations (1) and (2),
respectively:

sim_PCC(U, V) =
∑k(rU,k − rU) . (rV,k − rV)√

∑k(rU,k − ru)
2 . ∑k(rV,k − rV)

2
, (1)

sim_CS(U, V) =
∑k rU,k . rV,k√

∑k(rU,k)
2 .

√
∑k(rV,k)

2
. (2)

Generally, for a user V to be considered as U’s NN, their quantified rating similarity
value has to exceed a specific threshold, e.g., the value 0.0 for the PCC metric [55].

2. Predict the rating value that U would give to an item i; in order to compute the rating
prediction pU,i, the standard CF rating prediction formula [26,57] is typically applied:

pU,i = ru +
∑V∈NNu sim(U, V) . (rV,i − rV)

∑V∈NNu sim(U, V)
. (3)

The weight/importance of each NN to the prediction value is based only on its
numeric similarity with U, calculated during the previous step.

3. Recommend to U the items having the highest prediction values; the number of
recommended items is determined by the administrator of the recommender sys-
tem [58,59].

The proposed algorithm targets at augmenting the importance of each NN V, when
V and U (a) mutually agree on their opinion on some items and (b) their opinion on the
same items deviates from that of the majority of users; to this end, the proposed algorithm
adjusts the rating prediction formula given in the second step above (Equation (3)).

More specifically, the proposed algorithm modifies Equation (3) by considering a black
sheep factor bsf(U, V) between user U, for whom the rating prediction is computed, and each
of his NNs, V, as shown in Equation (4):

pU,i = ru +
∑V∈NNu sim(U, V) . bsb(U, V) ∗ (rV,i − rV)

∑V∈NNu sim(U, V) . bsb(U, V)
, (4)

Effectively, the bsf(U,V) factor is an adjustment assigned to each NN’s contribution to
the prediction computation, based on the degree to which users U and V mutually agree
on the rating of items, while at the same time disagreeing with the majority of other users
on the same items.

For the application of this algorithm, the bsf(U,V) factor needs to be determined; the
setting of the bsf factor to its optimal value is experimentally explored in the following
section, along with the prediction accuracy gains of the proposed algorithm.

4. Algorithm Tuning and Experimental Evaluation

In this section, we report on our experiments aiming to:

1. Determine the optimal value of the bsf factor, to tune the proposed algorithm and;
2. Evaluate the accuracy of the rating prediction of the proposed algorithm, both when

used independently and when combined with a state-of-the-art CF algorithm also
aiming at rating prediction accuracy improvement.

For the evaluation of the rating prediction quality, both the RMSE and MAE error
metrics have been employed. Their quantification was accomplished using the standard
“hide one” technique, where a rating from each user in the database is hidden and its
value is tried to be predicted [60–62]. In our work, this experiment was executed twice,
the first time a random rating was hidden for each user, while in the second experi-
ment, his last rating was hidden (considering the ratings’ timestamps in the rDB). These
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two experiments produced very close results (less than 1% difference observed), hence,
we report on the results from the first experiment, for conciseness. The practice described
above is the typical one when evaluating a rating prediction CF algorithm [31,63,64].

Our experiments were executed on six datasets; four of these were obtained from
Amazon [65,66], the fifth was sourced from MovieLens [67,68], while the last was sourced
from NetFlix [69]. Regarding the four Amazon datasets, we used the 5-core ones, where
each user and item have at least 5 ratings, to ensure that, unlike in the simple Amazon
datasets where for some users and items only one rating exists in the rating database, at
least 4 other ratings exist and hence the application of any CF algorithm can produce valid
results. The four Amazon datasets are considered relatively sparse (their density is less
than 0.1%), while the MovieLens and the NetFlix ones are considered relatively dense (their
density is greater than 1%). We opted to use both sparse and dense datasets in order to
confirm the applicability of the presented algorithm in every CF dataset, regardless of its
density. Table 1 is a synopsis of the datasets utilised in this work.

Table 1. Dataset information.

Dataset Name #Users #Items #Ratings Density

Amazon “Videogames” 24 K 11 K 232 K 0.09%
Amazon “CDs and Vinyl” 75 K 64 K 1.1 M 0.02%
Amazon “Movies and TV” 124 K 50 K 1.7 M 0.03%

Amazon “Books” 604 K 368 K 8.9 M 0.004%
MovieLens “Latest

100K—Recommended for
education and development”

670 9 K 100 K 1.7%

NetFlix competition 480 K 18 K 96 M 1.1%

The aforementioned datasets are widely used in CF research [70–73] and they contain
each rating’s timestamp (essential information for hiding each user’s last rating), while at
the same time they vary considering their item domain category (music, videogames and
TV series, books and movies).

4.1. Determining the Algorithm Parameters

The goal of first experiment is to determine the optimal value for the bsf factor used
for the rating prediction formula. To do so, we examined more than 40 candidate setting
alternatives, however, we report only on the most indicative ones for conciseness. More
specifically, Figure 1 illustrates the average prediction accuracy improvement for each
alternative under different bsf factor settings, pertaining to the MAE and the RMSE scores.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 16 
 

 
Figure 1. Average prediction error reduction under different bsf factor settings. 

where each settingi corresponds to a different setting for the computation of the bsf factor 
as follows: 

Setting 1: bsf(𝑈,𝑉) = 1.2, 𝑖𝑓 (blackSheepRatings(U, V) ≥ 1) ∧ (low_thr = 2.5) ∧ (high_thr = 3.5)1, otherwise  

Setting 2: bsf(𝑈,𝑉) = 1.2, 𝑖𝑓 (blackSheepRatings(U, V) ≥ 1) ∧ (low_thr = 1.5) ∧ (high_thr = 4.5)1, otherwise  

Setting 3: bsf(𝑈,𝑉) = 1.2, 𝑖𝑓 (blackSheepRatings(U, V) ≥ 1) ∧ (low_thr = 2.0) ∧ (high_thr = 4.0)0.9, otherwise  

Setting 4: bsf(𝑈,𝑉) = 1.2, 𝑖𝑓 (blackSheepRatings(U, V) ≥ 1) ∧ (low_thr = 2.5) ∧ (high_thr = 3.5)0.9, otherwise  

Setting 5: bsf(𝑈,𝑉) = 1.2, 𝑖𝑓 (blackSheepRatings(U, V) ≥ 1) ∧ (low_thr = 2.0) ∧ (high_thr = 4.0)0.8, otherwise  

Setting 6: bsf(𝑈,𝑉) = 1.2, 𝑖𝑓 (blackSheepRatings(U, V) ≥ 5% ⦁ numCommonlyRated(U, V)) ∧ (low_thr = 2.5) ∧ (high_thr = 3.5)0.9, otherwise  

Setting 7: bsf(𝑈,𝑉) = 1.2, 𝑖𝑓 (blackSheepRatings(U, V) ≥ 20% ⦁ numCommonlyRated(U, V)) ∧ (low_thr = 2.0) ∧ (high_thr = 4.0)0.8, otherwise  

In the equations presented above, the following notations are used: 
• low_thr denotes the value below which a rating is considered to be negative; formally, 

is_negative(rU,i) ⇔ rU,i ≤ low_thr 
• high_thr, correspondingly, represents the value above which a rating is considered to 

be positive. Formally, is_positive(rU,i) ⇔ rU,i ≥ high_thr 
• blackSheepRatings(U,V) is the number of ratings where users U and V both have a pos-

itive (or negative) rating, while the user community has a negative (or positive), re-
spectively, rating on the same item. Formally: 
o is_communityPositive(i) ⇔ average∈ (𝑟 , ) ≥ ℎ𝑖𝑔ℎ_𝑡ℎ𝑟, where UC is the user com-

munity, i.e., the set of users in the dataset 
o is_communityNegative(i)⇔ average∈ (𝑟 , ) ≤ 𝑙𝑜𝑤_𝑡ℎ𝑟 

o is_BlackSheepRating(U, V, i) ⇔ (is_Positive(U, i) ∧  is_Positive(V, i) ∧ is_communityNegative(i))  ∨  (is_Negative(U, i) ∧  is_Negative(V, i) ∧ is_communityPositive(i)) 
o blackSheepRatings(U, V) =  |{𝑖 ∈ 𝐼: 𝑖𝑠_𝐵𝑙𝑎𝑐𝑘𝑆ℎ𝑒𝑒𝑝𝑅𝑎𝑡𝑖𝑛𝑔(𝑈,𝑉, 𝑖)}| 

• numCommonlyRated(U,V) is the number of items that have been rated by both U and 
V; formally, 𝑛𝑢𝑚𝐶𝑜𝑚𝑚𝑜𝑛𝑙𝑦𝑅𝑎𝑡𝑒𝑑(𝑈,𝑉 = {𝑖 ∈ 𝐼: 𝑟 , ≠ 𝑁𝑈𝐿𝐿 ∧  𝑟 , ≠ 𝑁𝑈𝐿𝐿}  

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

setting1 setting2 setting3 setting4 setting5 setting6 setting7pr
ed

ic
tio

n 
er

ro
r 

re
du

ct
io

n 
(P

C
C

)

MAE RMSE

Figure 1. Average prediction error reduction under different bsf factor settings.
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where each settingi corresponds to a different setting for the computation of the bsf factor
as follows:

Setting 1: bs f (U, V) =

{
1.2, i f (blackSheepRatings(U, V) ≥ 1) ∧ (low_thr = 2.5) ∧ (high_thr = 3.5)

1, otherwise

Setting 2: bsb(U, V) =

{
1.2, i f (blackSheepRatings(U, V) ≥ 1) ∧ (low_thr = 1.5) ∧ (high_thr = 4.5)

1, otherwise

Setting 3: bsb(U, V) =

{
1.2, i f (blackSheepRatings(U, V) ≥ 1) ∧ (low_thr = 2.0) ∧ (high_thr = 4.0)

0.9, otherwise

Setting 4: bsb(U, V) =

{
1.2, i f (blackSheepRatings(U, V) ≥ 1) ∧ (low_thr = 2.5) ∧ (high_thr = 3.5)

0.9, otherwise

Setting 5: bsb(U, V) =

{
1.2, i f (blackSheepRatings(U, V) ≥ 1) ∧ (low_thr = 2.0) ∧ (high_thr = 4.0)

0.8, otherwise

Setting 6: bsb(U, V) =


1.2, i f (blackSheepRatings(U, V) ≥ 5% . numCommonlyRated(U, V))

∧(low_thr = 2.5) ∧ (high_thr = 3.5)

0.9, otherwise

Setting 7: bsb(U, V) =


1.2, i f (blackSheepRatings(U, V) ≥ 20% . numCommonlyRated(U, V))

∧(low_thr = 2.0) ∧ (high_thr = 4.0)

0.8, otherwise

In the equations presented above, the following notations are used:

• low_thr denotes the value below which a rating is considered to be negative; formally,
is_negative(rU,i)⇔ rU,i ≤ low_thr

• high_thr, correspondingly, represents the value above which a rating is considered to
be positive. Formally, is_positive(rU,i)⇔ rU,i ≥ high_thr

• blackSheepRatings(U,V) is the number of ratings where users U and V both have a
positive (or negative) rating, while the user community has a negative (or positive),
respectively, rating on the same item. Formally:

◦ is_communityPositive(i)⇔ average
W∈UC

(rW,i) ≥ high_thr , where UC is the user com-

munity, i.e., the set of users in the dataset
◦ is_communityNegative(i)⇔ average

W∈UC
(rW,i) ≤ low_thr

◦ is_BlackSheepRating(U, V, i)⇔ (is_Positive(U, i) ∧ is_Positive(V, i)∧
is_communityNegative(i)) ∨ (is_Negative(U, i) ∧ is_Negative(V, i)∧
is_communityPositive(i))

◦ blackSheepRatings(U, V) = |{i ∈ I : is_BlackSheepRating(U, V, i)}|
• numCommonlyRated(U,V) is the number of items that have been rated by both U and

V; formally, numCommonlyRated(U, V = |{i ∈ I : rU,i 6= NULL ∧ rV,i 6= NULL}|
In Figure 1 we can notice that the setting where the black sheep factor equals to 1.2

where two users U and V have at least 5% of their commonly rated items are considered
black sheep ratings, where the low threshold (that a rating is considered relatively negative)
equals to 2.5/5 and the high threshold (that a rating is considered relatively positive) equals
to 3.5/5, and 0.9 otherwise, is the optimal one, since it achieves the largest rating prediction
gains, for both error quantification metrics.

The corresponding experiment, using the CS user similarity metric produced similar
results, where the optimal setting achieved a rating prediction error reduction of 2% for
both the MAE and RMSE metrics.

4.2. Rating Prediction Accuracy Improvement Achieved by the Proposed Algorithm

After the proposed algorithm’s optimal setting for the bsf factor has been experimen-
tally determined, we present our findings regarding the performance gains in terms of
rating prediction accuracy, stemming from the application of the proposed algorithm on the
four datasets used in our evaluation (c.f. Table 1). Figure 2 presents the accuracy gains that
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the proposed algorithm achieves, in terms of the MAE and RMSE metrics, when using the
PCC similarity metric and taking the performance of the plain CF algorithm as a yardstick.
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Figure 2. MAE and RMSE reduction achieved by the proposed algorithm, when using the PCC user
similarity metric.

The proposed algorithm achieves an average prediction MAE reduction of 2.1% and
an average prediction RMSE reduction of 2.0%, when using the PCC user similarity metric.
Examining each dataset individually, the performance edge of the proposed algorithm
against the plain CF algorithm ranges from 1.3% and 1.3% (for the MovieLens 100K dataset)
to 2.7% and 2.5% (for the Amazon “Videogames” dataset), for the MAE and the RMSE
metrics, respectively.

Figure 3 presents the accuracy gains achieved by the proposed algorithm in terms of
the MAE and RMSE metrics, when using the CS similarity metric and again taking the
performance of the plain CF algorithm as a yardstick.
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Figure 3. MAE and RMSE reduction achieved by the proposed algorithm, when using the CS user
similarity metric.
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The proposed algorithm achieves an average prediction MAE reduction of 2% and
an average prediction RMSE reduction of 2%, as well, when using the CS user similarity
metric. At the individual dataset level, the performance edge of the proposed algorithm
against the plain CF algorithm, ranges from 1.2% and 1.1% (for the MovieLens 100K dataset)
to 2.3% and 2.5% (for the Amazon “Videogames” dataset), for the MAE and the RMSE
metrics, respectively.

4.3. Combining the Proposed Algorithm with a Second Algorithm Targeting Rating Prediction
Accuracy Improvement

As stated in the introduction, the proposed algorithm can be easily fused with other
CF approaches, aiming to enhance rating prediction accuracy.

The rationale behind the evaluation of the combination of the proposed algorithm with
another algorithm is that, currently, many recommender systems have been implemented
and use diverse algorithms that aim to achieve increased accuracy. A recommender system
administrator may wonder whether the algorithm employed in their system needs to be
replaced by the proposed one, and which would be the resulting benefits, or whether the
proposed algorithm may be combined with the one already employed and if so, what
would the benefits be. As a result, the following experiment offers useful insight regarding
the additional accuracy gains that may be reaped for existing recommender systems, if the
proposed algorithm is incorporated to complement any existing algorithm(s).

Towards this direction, the third experiment aims at assessing the rating prediction
accuracy improvement when combining the proposed algorithm with another CF rating
prediction accuracy approach. In particular, we report on our experiments where the
proposed algorithm is combined with the CFEPC algorithm [54]. The CFEPC algorithm is a
state-of-the-art algorithm (published towards the end of 2020), also targeting at improving
the CF rating prediction accuracy, and not needing any additional information on the
items or the users (e.g., user social relationships or item categories). Hence, it can be also
applied in all CF datasets. Figure 4 illustrates the improvement in the MAE achieved by the
inclusion/combination of the presented algorithm to the CFEPC algorithm, when using the
PCC as the similarity metric and again taking the performance of the plain CF algorithm as
a yardstick.
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The combination of the CFEPC algorithm with the proposed algorithm resulted in a
relative improvement of 15%, on average in relation to the gains obtained when using the
plain version of the CFEPC (from 6.8% to 7.8%, in absolute figures), considering the MAE
error metric. Similarly, the relative improvement, considering the RMSE error metric has
been found to be equal to 19%, on average (from 5.8% to 6.9%, in absolute figures). The
experiment demonstrates that the performance gains of the CFEPC algorithm is further
enhanced by approximately the 50% of the performance gains achieved when the proposed
algorithm is independently applied on sparse datasets (i.e., the Amazon datasets), while
for the dense dataset (Movielens Latest 100K dataset) the performance enhancement of the
CFEPC algorithm is approximately equal to the 25% of the gains achieved by the proposed
algorithm on the same dataset.

Figure 5 illustrates the improvement in the MAE achieved by the inclusion/combination
of the presented algorithm to the CFEPC algorithm, when using the CS as the similarity
metric and again taking the performance of the plain CF algorithm as a yardstick.
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Figure 5. MAE reduction achieved by the inclusion of proposed algorithm to the CFEPC algorithm,
when using the CS user similarity metric.

The combination of the CFEPC algorithm with the presented algorithm resulted in a
relative improvement of 14%, on average in relation to the gains obtained when using the
plain version of the CFEPC (from 6.7% to 7.6%, in absolute figures), considering the MAE
error metric. Similarly, the relative improvement, considering the RMSE error metric has
been found to be equal to 15%, on average (from 6.1% to 6.9%, in absolute figures). The
experiment demonstrates that the performance gains of the CFEPC algorithm is further
enhanced by approximately 50% of the performance gains achieved when the proposed
algorithm is independently applied on sparse datasets (i.e., the Amazon datasets), while
for the dense dataset (Movielens Latest 100K dataset) the performance enhancement of the
CFEPC algorithm is approximately equal to the 30% of the gains achieved by the proposed
algorithm on the same dataset.

4.4. Complexity Analysis of the Proposed Algorithm

The procedure of computing the average rating value for each item, given by all users,
is a procedure that can be easily executed offline (while loading the ratings from the rDB).
In case the aforementioned procedure is selected to be executed online, its complexity is
O(r), where r is the number of all user ratings in the rating database. When a new rating is
added to the database, the complexity to update the average is O(1), since the new average



Appl. Sci. 2021, 11, 8369 11 of 15

can be directly computed on the basis of the current one and the number of ratings for the
item, as shown in Equation (5):

newMean(i) =
currentMean(i).currentNumRatings(i) + newRating(i)

currentNumRatings(i) + 1
, (5)

Regarding space complexity, the overhead introduced by the procedure is 1 real
number per item (its average rating) and hence negligible.

The procedure of finding the number of black sheep ratings for each pair of NNs (to
compute the bsf factor for this pair of users) has a complexity of O(#NNs * #commonRat-
ings). According to [74,75], the top-K NNs are retained and the maximum number of NNs
typically considered ranges from 20 to 60. The average number of common ratings for
NNs pairs varies with the dataset, and the settings used to determine NNs; for instance,
in [76] it is suggested that CF system implementors may opt to consider only NNs with
at least 10 common ratings, to increase accuracy. In all cases, the computation of the bsf
factor considers the common ratings for each pair of NNs, and therefore its complexity is
identical to the computation of the similarity of the same pair of users, which is an integral
step of the CF procedure; therefore, the introduction of the computation of the bsf factor
does not affect the overall complexity of the algorithm. Notably, the computation of the
bsf factor need only be performed between a user and his/her NNs (whose number is
typically bounded by the K parameter of the top-K NN selection step), yielding significantly
lower execution time than the computation of pairwise user similarities, which must be
performed for all user pairs. The complexity of the rating prediction phase is not altered,
as compared to the typical CF algorithm listed in Equation (3), since only one additional
multiplication per considered rating is introduced.

Regarding space complexity, the overhead introduced by the need to maintain the bsf
factor values is 1 number per each NN pair (the value of their black sheep factor) and can
be easily accommodated in contemporary hardware.

5. Conclusion and Future Work

In this work, we have presented a novel CF algorithm that considers the information
of the black sheep ratings between NNs in the CF rating prediction procedure for the
improvement of the rating prediction accuracy. More specifically, a set of black sheep
ratings between two NNs appears when they both like a generally unaccepted item (they
both give a relatively high rating when compared to the relatively low average rating
given by all database users for this item) or vice versa. The rationale behind the use of
the aforementioned concept is derived from the fact that if a human likes an item (e.g.,
a TV series, a car model, a videogame) in the real world, that the majority of others do not
(and hence this product obtains a relatively low average rating value), and this human
finds another one that also likes the exact same product (which is a quite rare case), the
probability of valuing his opinion with greater prominence than the opinions of other users,
for a future recommendation, is relatively high.

We have experimentally validated the proposed algorithm through a set of exper-
iments, using two user similarity metrics, namely the PCC and the CS (which are the
two most used user similarity metrics in CF research [77–79]), two rating prediction error
metrics, namely the MAE and the RMSE, and six datasets of diverse product categories
(videogames, music, books, movies and TV series) to ensure the reliability and generalis-
ability of the results. Furthermore, the proposed algorithm was tested both as a standalone
application and combined with another CF algorithm also aiming at enhancing rating
prediction accuracy [54]. The evaluation results have shown that significant prediction ac-
curacy gains were introduced through the inclusion of the proposed algorithm. In the first
case (standalone application) an average of 2% rating prediction error reduction was found,
considering all cases. In the second case (when combined with another CF algorithm) the
inclusion of the proposed algorithm achieved a further average rating prediction error
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relative reduction of 16%. Lastly, regarding the time and space complexity of the proposed
algorithm, it was shown that both overheads are small.

An identified limitation of this work is that datasets in which the majority of the user
ratings are close to the mean value of the rating scale could potentially limit the gains that
can be reaped by the algorithm.

Our future work will initially focus on addressing the aforementioned limitation.
Furthermore, we plan to explore alternative methods for rating prediction error reduction
in CF datasets, in general. Finally, we will examine the extension of the proposed algorithm
so that it can include additional data sources, such IoT data [80–82], social network-sourced
information [44,83,84], and demographic features [85–87], targeting at further improving
rating prediction accuracy.
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